# Multiple Measures 

 Assessment Project (MMAP)August 10, 2016 Yuba College



## Intake Assessment



$$
y=f(x)
$$

## Cal-PASSPlus̀

## theRPgroup

# Yuba Community College 

 District Mission(emphasis added)

...provide rigorous, high quality degree and certificate curricula in lower division arts and sciences and in vocational and occupational fields as well as business-focused training for economic development. An essential and important function of the District is to provide remedial instruction, English as a second language instruction, and support services which help students succeed at the postsecondary level. Additionally, an essential function of the District is to provide adult noncredit educational curricula in areas defined by the State.

# Cal-PASSPlu 

## Yuba College Selected Goals

(emphases added)

- Foster a culture of evidence-informed decision making, including SLO development/assessment and other measures of student success.
- Research and utilize effective modes of delivery for our courses and services.
- Design our programs in such a way as to allow students to complete their educational goals in a timely manner.
- Evaluate our programs, services and processes to ensure continuous quality improvement.



Level of and Success in First College Math for Students whose Last High School Course was Algebra 2 with Grade of B or Better ( $\mathrm{n}=35,806$ )


Level of First Community College (CC) Course
College Success Rate ■ Percent Enrolled at CC Level

## Cal-PASSPlus

## MMAP Project Overview

- Collaborative effort of CCCCO Common Assessment Initiative (CAI) designed to develop, pilot, and assess implementation of placement tool using multiple measures through joint efforts of Cal-PASS Plus, RP Group and now 50 CCCs
- Develop multiple measures models for English, Mathematics, ESL and Reading
- Identify, analyze and validate multiple measures, including high school transcript data, non cognitive variable data, and selfreported HS transcript data
- Engage pilot colleges to conduct local replications, test models and pilot their use in placement, and provide feedback
- bit.ly/MMAP2015

Cal-PASSPlu

## Why Multiple Measures?

- Historically, tests alone have had relatively low predictive validity
- Multiple measures
- provide a more complete picture of student ability
- provide a way to increase the accuracy of placement, particularly reducing underplacement
- http://bit.Iy/CCRCPlacementAccuracy
- are required by law
- MM is supported by statewide senate


## Regulations

(emphases added)

- § 55003. Policies for Prerequisites, Corequisites and Advisories on Recommended Preparation
-(f) Content review with statistical validation is defined as conducting a content review (as defined in subdivision (c) of section 55000) and the compilation of data according to sound research practices which shows that a student is highly unlikely to succeed in the course unless the student has met the proposed prerequisite or corequisite.
- § 55502. Definitions.
-(i) "Multiple measures" are a required component of a district's assessment system and refer to the use of more than one assessment measure in order to assess the student. Other measures that may comprise multiple measures include, but are not limited to, interviews, holistic scoring processes, attitude surveys, vocational or career aptitude and interest inventories, high school or college transcripts, specialized certificates or licenses, education and employment histories, and military training and experience.


## Models for Combining Data

-Compensatory (blended)
-Ex: Test score augmented by points from survey responses
-Conjunctive (both/and)
-Ex: Test score of at least $80 \%$ and minimum grade point average of at least 2.5
-Disjunctive (either/or)
-Ex: Higher placement of either test or prior high school achievement

## Multiple bodies of work showing higher student capacity

- Developmental education redesign (California Acceleration Project)
- (e.g., Hayward \& Willett, 2014) bit.ly/CAPEval
- Corequisite developmental education
- (e.g., Coleman, 2015) bit.IY/2015ALP, CCA http://bit.Iy/CCACoreq
- Lowering cut scores
- Henson \& Hern, 2014 bit.ly/LetThemIn
- Kalamkarian, Raufman, \& Edgecombe, 2015; http://bit.ly/Kalamkarian2015;
- Rodriguez, 2014; bit.ly/Rodriguez2014
- 2-4X transfer-level course completion
- Comparable or higher success rates
- Works across demographic groups
- Reduces equity gaps substantially


## Data Set for Models

- CCC students enrolled in an English, Math, Reading or ESL class with matching high school data in CaIPASS
- Bulk of first CCC enrollments from 2008 through 2014
- Data files include:
- High school course grades, unweighted GPA, course type
- Assessment data, where avail. (ACCUPLACER, CST, EAP)
- CCC data (course grades, course level)
- Other derived info. (e.g., delay, CCC math class type)
-Rules were developed with the subset of students who had four years of high school data (about $25 \%$ of total sample)

Cal-PASSPlus

## Variables Explored in the Models

- High School Cumulative GPA (primary predictor)
- Grades in high school courses
- CST scores
- Advanced Placement course taking
- Taking higher level courses (math)
- Delay between HS and CCC (math)
- HS English types (Expository, Remedial, ESL)
- HS Math level (Elem. Alg., Int. Alg., Pre-Calc.)


# Cal-PASSPlus 

## Transfer Level Rule Sets

| Transfer Level Course | Direct Matriculant | Non-Direct Matriculant |
| :--- | :--- | :--- |
| College Algebra <br> (STEM) | HS 11 GPA $>=3.2$ OR | HS 12 GPA >=3.2 OR |
|  | HS 11 GPA $>=2.9$ AND <br> Pre-Calculus C (or <br> better) | HS 12 GPA $>=3.0$ AND <br> Pre-Calculus or Statistics <br> (C or better) |
| Statistics (Non STEM) | HS 11GPA >=3.0 OR | HS 12 GPA >=3.0 OR |
|  | HS 11 GPA $>=2.3$ AND <br> Pre-Calculus C (or <br> better) | HS 12 GPA $>=2.6$ AND <br> Pre-Calculus C (or better) |
| English | HS 11 GPA >=2.6 | HS 12 GPA >=2.6 |

## Transfer Level English Tree



## Statistics Tree - Direct Matriculants



## Potential Statewide Transfer Level Placement

|  | 100\% |
| :---: | :---: |
|  | 90\% |
|  | 80\% |
|  | 70\% |
| $\stackrel{\square}{\square}$ | 60\% |
| (1) | 50\% |
| \# | 40\% |
| ก | 30\% |
| $\stackrel{+}{5}$ | 20\% |
| ¢ | 10\% |
| 0 | 0\% |



$$
\begin{gathered}
\text { English } \\
(n=103,510)
\end{gathered}
$$

$$
\begin{gathered}
\text { Math } \\
(n=143,253)
\end{gathered}
$$

Projected impact on course success rates
(completion of course with C or better)


# Cal-PASSPlus 

A System of Data
Transfer Level English Placement
■ Current ■ Disjunctive MM


## Transfer Level Math Placement

■ Current ■ Disjunctive MM


## Transfer Level Rule Sets

| Transfer Level Course | Direct Matriculant | Non-Direct Matriculant |
| :--- | :--- | :--- |
| Reading | HS $11 \mathrm{GPA}>=2.7$ | HS $12 \mathrm{GPA}>=2.8$ |
| ESL | HS $11 \mathrm{GPA}>=2.7$ | HS $12 \mathrm{GPA}>=2.6$ |

- The vast majority of ELL/ELD HS students ( $\sim 85 \%$ ) who enter CC enroll directly in mainstream English courses.
- Other major populations of ESL students - such as international students, migrants, and older immigrants - will not have US high school transcripts; other multiple measures, such as essays, must be used with those groups.


## Progression from Placement to Enrollment English: 2014 vs. 2015



## English 100 Course Outcomes by Grade Distribution

| Students placed by MMAP |  |  |
| :---: | :---: | :---: |
| GRADES | FALL <br> 2015 <br> NUMBER | FALL <br> $\mathbf{2 0 1 5} \%$ |
| A or A- | 28 | $\mathbf{2 9} \%$ |
| B+, B or B- | 31 | $\mathbf{3 2 \%}$ |
| C+ or C | 14 | $\mathbf{1 4} \%$ |
| D or F | 14 | $\mathbf{1 4} \%$ |
| W | 10 | $\mathbf{1 0} \%$ |
| TOTAL | 97 | $\mathbf{1 0 0} \%$ |
| Overall <br> Course <br> Success | 73 | $\mathbf{7 5} \%$ |


| Students placed by Compass |  |  |
| :---: | :---: | :---: | \left\lvert\, \(\left.\begin{array}{c|c|}\hline GRADES \& \begin{array}{c}FALL <br>

2015 <br>
NUMBER\end{array}\end{array} $$
\begin{array}{c}\text { FALL } \\
\mathbf{2 0 1 5} \%\end{array}
$$\right.\right]\)

## Progression from Placement to Enrollment Math: 2014 vs. 2015



■Placed Enrolled —Progression

## Math Course Outcomes by Course Number

| Students placed by MMAP |  |  | Students placed by Compass |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Number | $\begin{gathered} \text { FALL } 2015 \\ \text { Number } \end{gathered}$ | FALL 2015 <br> Success \% | FALL 2015 Number | FALL 2015 <br> Success \% |
| 125 | 1 | 100\% | 3 | 67\% |
| 130 | 2 | 50\% | 16 | 81\% |
| 200 | 20 | 70\% | 59 | 56\% |
| 222 | 1 | 0\% | 4 | 100\% |
| 225 | 2 | 100\% | 9 | 67\% |
| 241 | 5 | 60\% | 10 | 50\% |
| 251 | 5 | 80\% | 34 | 76\% |
| 252 | 1 | 0\% | 2 | 100\% |
| 253 | 1 | 100\% | 1 | 100\% |
| 275 | 0 | n/a | 0 | n/a |
| Total | 38 | 68\% | 138 | 67\% |

## Common Concerns about MMAP

- High school grades are inflated
- Students placed via MMs will not be successful
- Our courses will have lower pass rates
- Our test is different
- Students would be better off in remedial coursework
- Students will only get a "C" in transfer-level work
- Students who get a " $C$ " in transfer-level won't be able to transfer
- High school GPA is only good for recent graduates


## Evidence for grade inflation low at best



- Little evidence for grade inflation over last decade
- Earlier observations of grade inflation may have been partly artifactual
-adjustments to GPA for AP/IB/Honors
- Zhang \& Sanchez, 2014: http://bit.Iy/ACTGradelnfl ation
- Most importantly - not consistent with the data


## Sierra College: Higher success rates for students placed via MMs



## Our tests are different - Compass

| Course | Compass Test | Compass | HSGPA | HSCPA + <br> Compass |
| :--- | :---: | :---: | :---: | :---: |
| English 1 | Writing Skills | .31 | .57 | .62 |
| Arithmetic | Pre-Algebra | .57 | .34 | .66 |
| Algebra | Pre-Algebra | .36 | .65 | .80 |
| Intermediate Algebra | Algebra | .47 | .66 | .84 |
| College Algebra | Algebra | .41 | .76 | .88 |
| College Algebra | College Algebra | .51 | .76 | .94 |

http://bit.ly/COMPASSValidation (Table 4 - Median Logistic R)

## Remedial courses are better for students



Figure 2. Statewide progression of students from three levels below transfer to transfer-level math from fall 2010 through spring 2013. source: Hayward and Willett (2014)

Belfield \& Crosta (2012): Given the frequency of underplacement, the poor predictive validity of assessment tests and the lack of positive outcomes for student placed into remediation, it would be statistically defensible and really quite reasonable to just put all students into transfer-level work.

## Main Findings

- Acceleration effects were large and robust
- Acceleration worked for students of all backgrounds
- Acceleration worked for students at all placement levels
- Implementation Mattered ${ }^{\text {M }}$


## CAP Acceleration increased odds of sequence completion

## Acceleration Odds Ratio (Effect Size) for English CAP Colleges



## Pathway-specific results: English



## Pathway-specific results: Math

| 20 | Acceleration effect size (odds ratio) by college- |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| specific math pathways (lighter bars with |  |$\quad 17.76$

## CAP: Completion of transfer-level math for traditional and accelerated pathways by ethnicity



## Will only get a " $C$ " in transfer course



## Distribution of Statistics Node 8 (Circled)

 35\%

# Cal-PASSPlus 

## theRPgroup

A System of Data

## Students who get a " $C$ " in transfer-level won't be able to transfer

## Transfer rates by grades in first English course



Irvine Valley College, first course enrolled in, Spring 2000 to Fall 2011 who took an English course. N=28,279, transfer within 4 years.

## High school GPA is only good for recent graduates

Decay function for the predictive utility of HSGPA on English grades


## High school GPA is only good for recent graduates

Decay function for the predictive utility of HSGPA on
Math grades

Correlation between Predictor and 1st CC Math Grade


## MMAP Pilot Colleges

- NCV and Self-Report Piloting
- Implementation
- Outcomes
- Evaluation methods
-Success rates
-Throughput rates
-Student and instructor surveys
- Next steps


## How do we get started?

- MMAP Getting Started Guide and Welcome Packet: http://bit.ly/MMAPStart
-Convene locally appropriate decision-making group(s)
-Identify/recruit key stakeholders/decision-makers
-Discuss existing research and local implementation options
-Review webinars, especially on how to implement:
http://bit.ly/MMAPWebinars
-Work with Cal-PASS Plus to identify feeder district patterns, download retrospective data \&/or upload new applicants for K-12 data


## Group Work

-Who should be involved by function (i.e.
Department Faculty, A\&R, IT, Research, etc.)?
-What committees may be involved?
-What resources are needed?
-What funding sources are available?
-When is the next meeting?

# Cal-PASSPlus 

A System of Data

## Contacts

Loris Fagioli
The RP Group
Ifagioli@ivc.edu

Mallory Newell
The RP Group
newellmallory@deanza.edu

Terrence Willett
The RP Group
twillett@rpgroup.org
Craig Hayward
The RP Group
chayward@rpgroup.org

John Hetts
Educational Results Partnership
jhetts@edresults.org
Ken Sorey
Educational Results Partnership
ken@edresults.org

Daniel Lamoree
Educational Results Partnership
dlamoree@edresults.org
Peter Bahr
University of Michigan
prbahr@umich.edu


